HST.583: Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Harvard-MIT Division of Health Sciences and Technology Course Instructor: Dr. Jorge Jovicich.

PHYSICS OF MRI ACQUISITION

Quick Review

Alternatives to BOLD for fMRI

HST-583, Fall 2002

Quick Review of Concepts

- NMR Signal
- MR Imaging
- MRI Contrast
- Brain Functional MRI
 - Goal: Detect neural activation
 - BOLD method

Physiology during Neural Activation: Quick Review

Neural Firing: Electromagnetic Activity
 Detection: EEG, MEG

Biochemical Reaction: Metabolic Activity

Detection: PET, MRS

- cerebral metabolic rate of oxygen utilization (CMRO₂)
- Vascular Response: Hemodynamic Activity Detection: PET, Optical Imaging, fMRI
 - cerebral blood flow (CBF)
 - cerebral blood volume (CBV)

Alternatives to BOLD: Motivation

- What does BOLD detect?
- Changes in [deoxy-Hgb]:
 - changes in: CBF + CBV + CMRO₂
- Strong effects but limited physiological interpretation
- Independent measures of:
 CBV, CBV and CMRO₂ would be better

Alternative to BOLD: Perfusion MRI

- Techniques that measure vascular parameters:
 - CBF: rate at which blood flows through the microvasculature of a region of tissue.
 Unit: ml / g tissue / sec

(~50 in gray matter, ~20 white matter) Independent of MRI technique.

- CBV: fraction of volume of tissue occupied by blood (~3%).
 Dependent of MRI technique (sensitivity to vessel size)
- MTT: Mean transit time, average time that blood spends passing through the blood volume with a region of tissue before it exits though the venous system.

Perfusion MRI

Fundamental Principle

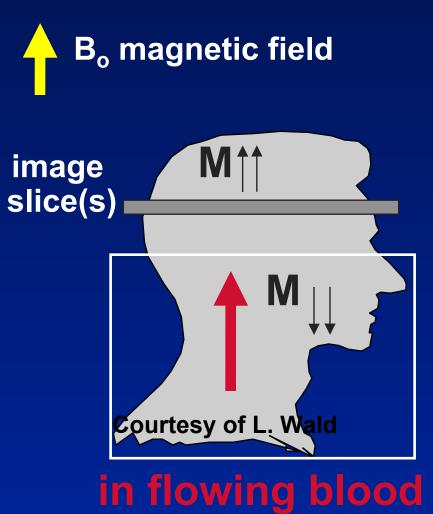
- A paramagnetic tracer goes through a capillary network
- Transient changes in local magnetic fields of surrounding tissue
- Transient changes in the MR signal
- MR signal changes vary rapidly: need fast MRI
- MR signal time course
 - concentration-time course (of tracer in tissue)
 - → tissue hemodynamic parameters

Perfusion MRI

- Mainstream Approaches
 - Bolus injection of magnetic contrast agent
 - Arterial Spin Labeling (ASL): blood as tracer
- Potential Applications in Brain
 - Blood flow in resting state:
 - Cerebrovascular disease, tumor characterization, monitoring drug effects, etc.
 - Blood flow during activation:
 - quantification, complements BOLD

Area of research

Strengths of ASL


Relative to bolus method

- no contrast agent required
- reduced cost, discomfort
- no limit to number of scans
- temporal resolution of seconds

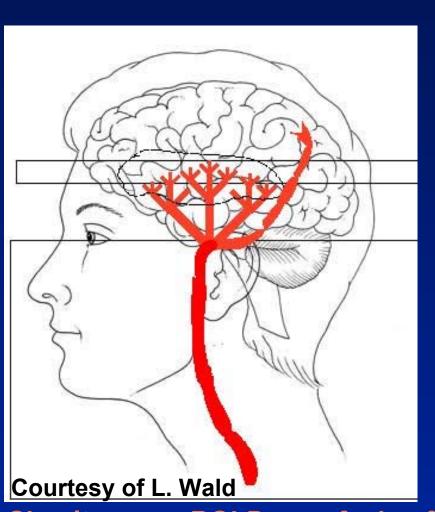
Relative to BOLD

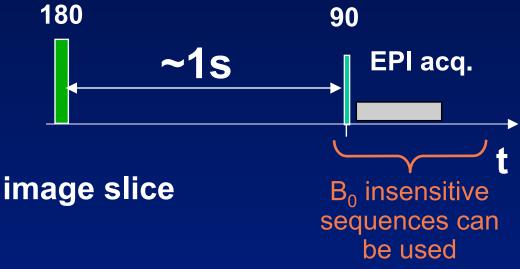
- provide absolute measure of blood flow
- more statistical power for low frequencies*
- less variability across subjects*
- less sensitive to susceptibility

Arterial Spin Labeling in Brief

- Tracer: water in blood
- Labeling: invert inflowing magnetization
- Life time: T₁ of blood water (~1s)
- Labeled water flows into capillaries and exchanges with tissue water
- Inverted arterial inflow reduces total tissue magnetization in slice (~1%)
- Subtraction from a control image gives image proportional to CBF
- Theory can relate the ASL signal with absolute blood flow

Arterial Spin Labeling Strategies


Pulsed ASL


 Labeling is achieved by a short RF pulse that inverts the magnetization in a slab of tissue

Continuous ASL

 Labeling is achieved continuously as water spins flow past a plane defined by the location where a continuous RF B1 field is resonant

Pulsed ASL: The Label

inversion slab

- T1 is important
- Thru slice arteries relatively dark
- Large inversion slab is important

Simultaneous BOLD + perfusion fMRI possible

Arterial Spin Labeling

- Perfusion image = control image labeled image
- Perfusion signal changes < 3% intensity reduction
- Averaging to improve SNR:
 control label control label control label ...
 ⇒ lower temporal resolution than BOLD
- Motion: big problem (subtraction errors)

BOLD and Perfusion fMRI: Temporal Stability

Estimated SNR vs stimulus frequency

See Aguirre et al., Neurolmage 2002

Within subject experimental design:

- BOLD greater SNR for most stimuli frequencies
- Due to low noise at low low frequencies, perfusion might be better for experimental designs in which low frequencies predominate

ASL Sensitivity Across Subjects

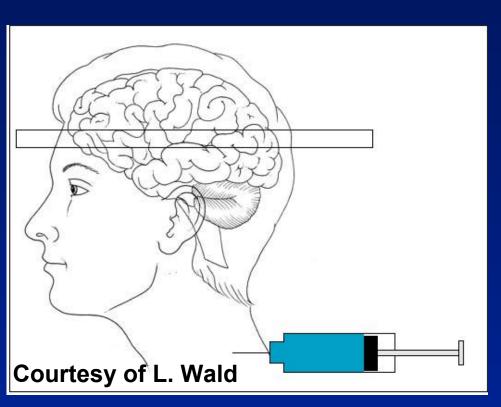
Small signal changes

- But better than BOLD for long time scales
- But maybe better across subjects (more consistent)
- SNR increases more rapidly with field strength than BOLD
 - BOLD TE's must be shortened
 - T1 lengthening increases ASL signal

Average t-values

See Aguirre et al., Neurolmage 2002

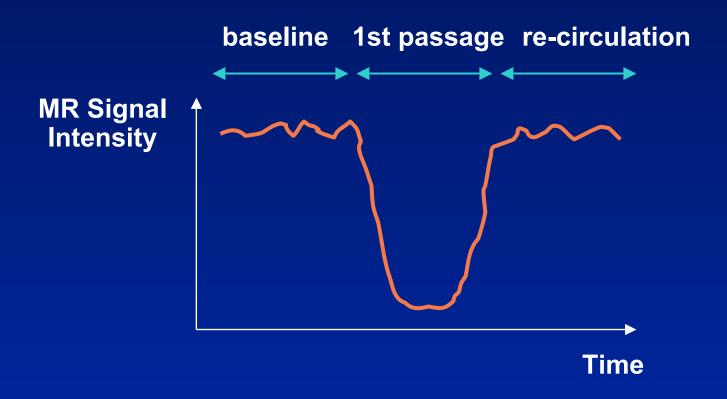
ASL: Limitations


- Short life time of label due to T1
 - Low SNR: limits spatial resolution
- Dependence on arrival times and exchange times
- Oblique flowing blood vs assumption of upwards flow
- Accurate measurements of arterial blood T₁ and M₀ for absolute quantification
- No CBV obtained

Direct measurement of CBV for fMRI

MOTIVATION:
 If CBF and CBV measured independently

 \Rightarrow estimation of CMRO₂


Bolus Gd(DTPA) MR CBV(Intravascular T2* agent)

- Agent stays in brain vessels
- Susceptibility effects $\Rightarrow \downarrow T_2^* \Rightarrow$ signal drop
- Signal drop ⇒ concentration agent
- Integral of concentration time course proportional to rCBV

CBV: Bolus tracking

Signal time course in perfused voxel

CBV: Bolus tracking

Concentration time curve in perfused voxel

Summary: Brain fMRI Contrasts

- BOLD: The most sensitive, but complex link to sources of neural activation
- Alternatives to BOLD:
 - CBF, CBV, CMRO₂
 - Used for better understanding and complement BOLD
 - More direct assessment of vascular response
 - Less sensitive, under active development
- Hopes for the future:
 - Perfusion quantification improvements
 - Less motion sensitivity
 - Wider availability

More in: http://www.ujf-grenoble.fr/ismrm/ASL/outline.htm