Diffusion Imaging I

By: Osama Abdullah

Lecture 1 outline

- Introduction.
 - What is diffusion?
 - Diffusion and signal attenuation.
 - Diffusion imaging.
- How to capture diffusion?
 - Diffusion sensitizing gradients.
 - Spin Echo.
 - Gradient Echo.
 - Quantitative description.
 - What is the *b*-value?
 - High *b*-value problems.
- Diffusion imaging pulse sequence.
 - Pulsed Gradient Spin Echo.
 - Single shot EPI.
 - RARE.
 - STEAM.

- Diffusion basics.
 - Einstein equation.
 - Factors that affect diffusion.
 - Diffusion tensor.
 - Anisotropic vs. isotropic diffusion.
- Diffusion Imaging techniques:
 - Introduction
 - Family of techniques
 - Diffusion weighted imaging.
 - Concept.
 - Quantitative description.
 - Limitations
 - Quantitative apparent diffusion coefficient.
 - Definition.
 - Linear and nonlinear fitting.
 - Clinical applications.

Ref: Handbook of MRI pulse sequences (P. 274-280 and 830-853)

Lecture 2 outline

- Family of diffusion techniques, cont'd
 - Diffusion tensor imaging
 - Quantitative description.
 - Finding the diffusion tensor.
 - Scalar and vector parameters extracted from the diffusion tensor (RA, FA, MD, PE, and Tractography)
 - q-space imaging
 - Quatitative description.
 - Definition of q.
 - How to conduct a q-space experiment?
- Paper discussion:

Assaf et al 2002: "High b-value q-space analyzed diffusion-weighted MRI: Application to multiple sclerosis". Magn Reson Med 47:115-126, 2002 Wiley-Liss, Inc.

What is diffusion?

- The Brownian motion of molecules in a medium.
- Brownian motion
 The random movement of
 colloidal particles through
 a liquid or gas.

- In the presence of B₁, water molecules will cause phase dispersion of the transverse magnetization and hence, signal loss.
- The attenuation degree depends on:
 - The structure of the tissue.
 - Physical and physiological state of the tissue.
 - Microenvironment.

Diffusion Imaging

- MRI methods designed to explore tissue diffusion properties.
- The data acquisition methods are called *diffusion imaging pulse sequences.*
- Can be performed on 1D, 2D or 3D.
- 2D is the most commonly used.

How to capture diffusion?

Motion Sensitizing Gradients: Diffusion Weighting Gradients

Diffusion weighting gradients

- Proposed by Stejskal and Tanner (1965).
- Increase the sensitivity of MRI signal to molecular diffusion.
- Consists of two lobes with *equal* areas, maximum amplitude allowed, and a longer pulse width than most of the imaging gradients
- Synonyms: Bipolar gradient, Stejskal-Tanner gradient.

$$\int_{t_{exitation}}^{t_{exitation}} G_d(t) dt = \int_{t_{exitation}}^{t_{exitation}} G_d(t) dt$$

Gradient Echo

$$\int_{t_refocus}^{TE} G_d(t) dt = 0$$

- Using the diffusion weighting gradient will result in signal attenuation due to water diffusion.
- The degree of attenuation is proportional with:
 - Diffusion Coefficient, **D** (mm²/s)
 - **b**-value (s/mm²)

Quantitative description

• The phase accumulated in the presence of a diffusion weighting gradient is:

$$\phi = \int_{0}^{t} \Delta \omega dt' = \gamma \int_{0}^{t} \vec{G}(t') \cdot r(t) dt'$$

Where:

- *r*(*t*) is the location of a spins isochromat
- G(t') is the diff. grad waveform

- Random moving spins will accumulate different phases, and because of their random motion, phases will cancel out and hence signal loss will occur.
- The resultant MRI signal S is related to the variance of a Gaussian phase distribution, Φ^{2i}

$$S = S_0 \exp(-\langle \Phi^{2} \rangle) = S_0 \exp(-bD)$$

Where:

- $-S_0$ is the signal intensity in the absence of diffusion.
- b-values depends on:
 - » Gradient shape & amplitude
 - » Separation of the lobes
 - » Pulse width

Example

b-value

 b-value is related to an arbitrary waveform G(t) by:

$$b = (2\pi)^2 \int_{0}^{TE} \vec{k(t)} \cdot \vec{k(t)} dt$$
$$\vec{k(t)} = \frac{\gamma}{2\pi} \int_{0}^{t} \vec{G(t')} dt'$$

b-values for commonly used diffusion-gradient waveforms in SE

 Consider a rectangular gradient lobe of amplitude 25 mT/m and with a separation of 50 ms. To obtain a b-value of 1000 s/mm² we need the pulse width to be:

$\delta = 22.99 \,\mathrm{ms}$

Problems associated with having high *b*-values

Long TE

- Reduces the SNR (wait longer time before reading the echo).
- $-T_2$ shine through effect: unwanted T_2 weighting in the diffusion weighted image.
- Concomitant fields (depends on G^2/B_0).
- Eddy currents
 - Geometric distortion (in diffusion weighted EPI pulse sequences).

Diffusion imaging pulse sequences

- Pulsed Gradient Spin Echo (PGSE).
- Single-shot-spin-echo EPI.
- RARE (FSE).
- Stimulated echo pulse sequences.

Diffusion weighted spin echo pulse sequences

S.E. pulse sequences cont'd

- Very long data acquisition (10-20 minutes).
- Needs motion correction, using *Navigator* echoes.
- Excellent quality and high resolution images with minimum artifacts if motion induced phase error are corrected.

Single-shot-spin-echo EPI

Single-shot-spin-echo EPI cont'd

- Most commonly used due to:
 - High acquisition speed (less than 100 ms/image)
 - High motion insensitivity
- How to increase the acquisition speed?

Reduce TE

How to reduce TE while keeping high *b*-value?

How to reduce TE while keeping high *b*-value?

- Use the maximal gradient amplitude and minimize the pulse width.
- Use "maximal slue rate"

problems:

- Peripheral nerve stimulation.
- Eddy current consideration, especially with the usage of diffusion-weighting gradients.
- Beside of that, using higher slew rate will reduce the ramp time which is much smaller than the plateau time.

EPI Disadvantages

- Distortion due to susceptibility variation
 - Difficult to correct even when using high-order shimming
 - Susceptibility artifacts increase linearly with increasing B_0
- Nyquist ghosting due to eddy currents.

Diffusion weighted RARE (FSE) sequences

- Not commonly used as EPI.
- It is *not* straightforward to implement; since the diffusion-weighting gradient lobes will violate the CPMG condition.
- This will cause inconsistent phase errors between the spin echoes and the stimulated echoes, leading to signal loss.

Carr-Purcell-Meiboom-Gill (CPMG) conditions

- 1. Refocusing pulses must be
 - 1. 90° out of phase with respect to the excitation pulse
 - 2. Evenly positioned with equal spacing between any two pulses
 - 3. The spacing between pulses must equal to twice the interval between the excitation and the first refocusing pulse.
- 2. Phase accumulated by a spin isochromat between any two consecutive refocusing pulses must be equal
- When these conditions are met, primary and stimulated echoes occur only at the mid-point between two consecutive refocusing pulses and carry the same phase

• To overcome the CPMG problem, different methods can be used:

- A. Diffusion-weighted RARE pulse sequences with crushers
- **B.** Split acquisition of fast spin echo signals for diffusion imaging (SPLICE)

A. Diffusion-weighted RARE pulse sequences with crushers

- Crushers will eliminate stimulated echoes while preserving the spin echo signals.
- This method does not satisfy the CPMG conditions, but signal loss could be minimized if
 - B_1 field is homogeneous
 - RF refocusing pulses are close to 180°

B. Split acquisition of fast spin echo signals for diffusion imaging (SPLICE)

Diffusion Preparation:

- Prepare the transverse magnetization with the proper diffusion weighting.
- Store the diffusion-prepared magnetization in the longitudinal axis.
- Recall this magnetization by employing stimulated echoes.

Advantages of diffusion preparation

- Diffusion weighting gradients will contribute to the lobe separation Δ, thus high *b*-values can be obtained.
- In the same time, storing the magnetization in longitudinal axis will *not* experience T₂ or T₂^{*} dephasing during the interval *TM*.

Split echoes of FSE for diffusion imaging Pulse Sequence

- Imperfect refocusing pulses and imbalanced readout gradient waveform are used. CPMG condition is violated and hence spin echoes and stimulated echoes are **no** longer in phase.
- After the first echo, two families of echoes will be formed in the echo train:
 - Spin echoes
 - Stimulated echoes
- Readout window is long so that two separate echoes are acquired. Then two separate DW images are reconstructed and their magnitudes are combined to improve the SNR.
- Problems:
 - Long reading window leads to image blurring and shorter echo train length.

Stimulated echo pulse sequences (STEAM)

STEAM cont'd

- High *b-values without incurring TE-induced* signal loss.
- Lower SNR compared to SE and SE-EPI sequences with the same TE; because the maximal amplitude of the stimulated echo is only one-half of that of the spin echo.
- High-speed DW STEAM can be obtained if the third RF pulse is replaced by a series of low flip angle pulses separated by short TR.

Review

- Introduction.
- Diffusion sensitizing gradients.
- Diffusion imaging pulse sequences.
- Diffusion basics.
- Diffusion Imaging techniques:
 - Diffusion weighted imaging.
 - Quantitative apparent diffusion coefficient.

Basics of diffusion

• Einstein equation describes the behavior of unrestricted diffusion of molecules:

$$r_{rms} = \sqrt{2Dt}$$

Where:

- r_{rms} is the 1D root-mean-squared displacement (distance)
- *D* is the diffusion coefficient (distance² / time)
- t is the diffusion time

Factors that affect diffusion

- Presence of macromolecules, organelles, cell membrane and other cellular and sub-cellular structures.
- These structures act as "obstacles" to molecular diffusion and so reduce the diffusion coefficient of water.
- For example, intracellular diffusion coefficient is less than extracellular space due to higher concentration of organelles inside the cells.

Diffusion models

• Isotropic

- No orientation dependence.

- Anisotropic
 - Diffusion depends on spatial orientation.

Diffusion tensor

 To express the diffusion direction mathematically, diffusion can be expressed as a 2nd rank tensor:

$$\stackrel{\Rightarrow}{\mathsf{D}} = \begin{bmatrix} \mathsf{D}_{xx} & \mathsf{D}_{xy} & \mathsf{D}_{xz} \\ \mathsf{D}_{xy} & \mathsf{D}_{yy} & \mathsf{D}_{yz} \\ \mathsf{D}_{xz} & \mathsf{D}_{yz} & \mathsf{D}_{zz} \end{bmatrix}$$

$$\stackrel{\Rightarrow}{\mathsf{D}} = \begin{bmatrix} \mathsf{D}_{xx} & \mathsf{D}_{xy} & \mathsf{D}_{xz} \\ \mathsf{D}_{xy} & \mathsf{D}_{yy} & \mathsf{D}_{yz} \\ \mathsf{D}_{xz} & \mathsf{D}_{yz} & \mathsf{D}_{zz} \end{bmatrix}$$

Where:

- Diagonal elements represent the diffusion coefficient along that direction (in Laboratory frame of reference).
- The off-diagonal elements represent the degree of correlation between random motion in two directions.
- All the elements are *real* and the matrix is *symmetric*.

Diffusion models cont'd

$$\begin{cases} r_1 = \sqrt{2D_1 t} \\ r_2 = \sqrt{2D_2 t} \\ r_3 = \sqrt{2D_3 t} \end{cases}$$
 Laboratory frame

Diffusion boundary is the surface of the diffusion ellipsoid.

Isotropic vs. Anisotropic

- Cerebrospinal fluid (CSF):
 - Isotropic diffusion (fast diffusion).
 - Off diagonal elements of the diffusion tensor are zeros.
 - Diagonal elements are equal; $D_{xx} = D_{yy} = D_{zz} = D$
- White matter and Skeletal muscle:
 - Anisotropic diffusion.
 - Diffusion coefficient along fiber tract is much larger than of other directions:

(Principal diffusion direction)

- Can reveal fiber orientation and connectivity.

Diffusion imaging techniques

- Diffusion Weighted Imaging (DWI) and Apparent Diffusion Coefficient (ADC), *Le Bihan* 1986.
- Diffusion Tensor Imaging (DTI), Basser 1994.
- Magnetic Resonance Tractography, *Xue 1999*
- q-space imaging, Callaghan 1991.
- High Angular Resolution Diffusion (HARD) imaging, *Frank 2002.*

I. Diffusion Weighted Imaging (DWI)

• Basic diffusion relation:

$$S = S_0 e^{-bD}$$

Where:

- S: Voxel intensity with diffusion weighting
- •S₀: Voxel intensity *without* diffusion weighting
- D: Diffusion coefficient along the gradient direction
- b: The b-value

- Contrast of DW image depends on the gradient direction, i.e., contrast is spatially dependent.
- To remove this dependence, apply three gradients along three orthogonal directions and take the mean of the resulting diffusion coefficients .

Note that D_{xx} , D_{yy} , D_{zz} are the diagonal elements of the diffusion tensor

FIGURE 17.18 Three diffusion-weighted images acquired with the same *b*-value, but different gradient directions. Images are acquired with gradients along the (a) right-left, (b) anterior-posterior, and (c) superior-inferior directions.

• If $b_{xx} = b_{yy} = b_{zz} = b$, then the geometric mean of the three signals is:

$$S_{xyz} = \sqrt[3]{S_x S_y S_z} = S_0 e^{-b(D_{xx} + D_{yy} + D_{zz})/3} = S_0 e^{-b D_{trace}/3}$$

Where:

• D_{trace} : is the sum of the diffusion tensor diagonal elements

Diffusion Trace weighted "or Isotropic" DW image

- Clinical application of DWI: Cerebral Ischemia
 - Early detection of cerebral ischemia.

– Infected regions exhibit hyperintense signal compared to healthy brain tissue, which is not observed by T_1 and T_2 .

II. Quantitative Apparent Diffusion Coefficient (ADC)

• A series of DW images acquired with multiple *b*-values:

$$S_1 = S_0 e^{-b_1 D}$$
, $S_2 = S_0 e^{-b_2 D}$... $S_n = S_0 e^{-b_n D}$

- S₀ should be calculated separately without any diffusion weighting, and S_i to be calculated with different *b*-values.
- Each signal may represent the geometric mean to remove the orientation dependence
- Diffusion map is reconstructed on pixel by pixel basis in two ways:
 - Linear regression fitting.
 - Nonlinear fitting.

- Linear fitting:
 - Between $ln(S_0/S_i)$ and b_i to obtain the diffusion coefficient map *D*.
 - Image contrast is inverted compared to DW image.

DW image

- Nonlinear fitting (exponential diffusion image):
 - Similar to the one of T_2 mapping based on a series of T_2 -weighted images with varying TE.

Perform the nonlinear fit based on the exponential relation:

$$S = S_0 e^{-bD}$$

Example

- Diffusion weighting gradient, $b = 500 \text{ s/mm}^2$
- Imaging gradients contribution, $b = 40 \text{ s/mm}^2$
- Measured DW signal: $S = 0.4 S_0$
- Find *D*
 - Neglecting imaging gradients
 - Considering image gradients
- Solution
 - $D = ln(0.4)/-500 = 1.8 \times 10^{-3} \text{ mm}^2/\text{s}$
 - $D = ln(0.4)/(-540) = 1.7 \times 10^{-3} \text{ mm}^2/\text{s}$

So D will be overestimated if the imaging gradients contribution is not considered

Where:

- *G_d* is the diffusion gradient
- G_{im} is any imaging gradient

• c_1 , c_2 and c_3 are constants that depends on the gradient used.

- Cross terms:
 - Cross terms varies with gradient direction since imaging gradients waveforms differ along the three axes.
 - Imaging gradients contribution:
 - False diffusion anisotropy.
 - Overestimation of the ADC value.
 - Cross-term correction for readout and sliceselection can be used (but not the phase encoding, why?)

Biexponential Decay

 In some tissues (e.g. brain), diffusion signal follows a biexponential signal decay according to:

$$S = S_0 (\zeta e^{-bD_f} + (1 - \zeta) e^{-bD_s})$$

Where:

- ξ and $(1-\xi)$ are the compartmental fractions.
- D_f is the fast diffusing component.
- D_s is the slow diffusing component.

Shine through effect

- The effect of T_2 tissue relaxation in diffusion imaging.
- To minimize the Shine through effect:
 - Have a long TR
 - Short TE (TE< $3T_2$)
- Use quantitative ADC mapping to reduce TE. How?
 - Use only two values *b*-values, one without diffusion (S_0) and the other with diffusion weighting $(b=1000 \text{ s/mm}^2)$.
 - Obtain ADC directly by solving $S = S_0 e^{-bD}$