Gradient Lobe Shapes
Imaging Gradients

Oct 31, 05

Review: Simple Gradient Lobes

1. Trapezoidal and triangular lobes

2. Sinusoidal lobes
Bridged Gradient Lobes

• Trapezoidal and triangular lobes are the most efficient lobes to generate a predetermined gradient area.
• When gradient lobe with a specified amplitude is adjacent to another lobe of the same polarity the most efficient gradient lobe shape is the bridged gradient lobe.

Bridged Gradient Lobes (cont’d)
Advantages of the Bridged Gradient Lobes

- Time savings
 - \(r_b < r_1 + r_2 \)
- Less acoustic noise
- Reduced eddy currents
- Less gradient heating

Mathematical Description

- Assume \(G_2 \geq G_1 > 0 \) then,
 - \(r_1 + r_2 = (G_1 + G_2)/S_R \)
 - \(r_b = (G_2 - G_1)/S_R \)
Gradients for Oblique Acquisitions

- Oblique acquisition is achieved by digitally modifying the gradient waveforms that are sent to the gradient amplifiers.

Cartesian acquisitions

- Frequency encoding, phase encoding and slice selection denoted by logical axes. (x, y, z)
Physical axes

- X, Y, Z: cartesian coordinate system that is fixed to the magnet and rotated with respect to the logical axes
- Isocenter: gradients produce zero magnetic field and generally it lies in the center of the magnet

Image orientation standards

<table>
<thead>
<tr>
<th>Image Plane</th>
<th>Apparent Location of the Viewer</th>
<th>Top of Image</th>
<th>Right Side of Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial and axial-like oblique</td>
<td>Patient’s feet</td>
<td>Patient’s front</td>
<td>Patient’s left</td>
</tr>
<tr>
<td>Sagittal and sagittal-like oblique</td>
<td>Patient’s left</td>
<td>Patient’s head</td>
<td>Patient’s back</td>
</tr>
<tr>
<td>Coronal and coronal-like oblique</td>
<td>Patient’s front</td>
<td>Patient’s head</td>
<td>Patient’s left</td>
</tr>
</tbody>
</table>

* These conventions are usually followed regardless of the patient positioning.
Oblique acquisitions

• The three logical waveforms are digitally mixed in ratios determined by angulations

Rotation Mathematics

• A 3 x 3 orthogonal rotation matrix achieves the physical gradient waveforms

\[
\begin{bmatrix}
G_X(t) \\
G_Y(t) \\
G_Z(t)
\end{bmatrix} = \mathbf{R}
\begin{bmatrix}
G_x(t) \\
G_y(t) \\
G_z(t)
\end{bmatrix}
\]

\[\mathbf{R}\mathbf{R}^T = I\]
Imaging Gradients

1. Frequency-Encoding Gradients
2. Phase-Encoding Gradients
3. Slice Selection Gradients

Frequency-Encoding Gradients

- The gradient spatially encodes NMR signals by assigning a unique Larmor frequency to each spin isochromat at a distinct spatial location along the gradient direction.
- Time domain NMR signals will consist of a range frequencies corresponding to different locations.
- The polarity of the gradient can be either positive or negative.
Qualitative description of X-Gradients

No Gx

Gx

Content of the Frequency-Encoding gradients

- Two major lobes
 - Prephasing gradient lobe (dephasing)
 - Readout gradient lobe
- In an RF Spin echo pulse sequence, the lobes are separated by an RF refocusing pulse.
Qualitative (cont’d)

• In a gradient-echo pulse sequence, both lobes can be combined

• The purpose of the prephasing lobe is to prepare the transverse magnetization so that an echo signal can be created at a later time

Quantitative Description of Frequency-Encoding Gradients