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MR IMAGE SEGMENTATION

Prepared by : Monil Shah

What is Segmentation ?
Partitioning  a region or regions of interest in images such 
that each region corresponds  to one or more anatomic 
structures

Classification
Classification means to assign to each point in the image a 
tissue class, where the classes are agreed in advance 

Note that the problems are inter-linked: a classifier 
implicitly segments an image, and a segmentation implies a 
classification
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• An image can be represented as:

• F is the set of all pixels and P() is a uniformity (homogeneity) predicate 
defined on groups of connected pixels, then segmentation is a 
partitioning of the set F into a set of connected subsets or regions 
(S1,S2,…..Sn) such that

• The uniformity predicate P(Si) = true for all regions

• P (SiυSj) = false when Si is adjacent to Sj.

• Radiotherapy planning
• Surgical planning
• Clinical drug trials
• Multiple Sclerosis, MS 

Lesion quantification
• Determine Brain tumor 

volumetrices
• Artery Vein separation in MR 

Angiography 
• Preprocessing for 

multimodality Image 
Registration
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MR Image
These two features facilitate segmentation

Excellent contrast between soft tissues
Brain images are approximately piecewise constant; with small 
number of classes

Practical Conditions

There are image distortions (e.g. motion artifact, bias field,
Partial volume effect (Many pixels contain more than one tissue 
type)
– structures of interest (tumours, temporal lobes,
…) have complex shapes

• The noisy MRI image of the brain slice shown left is 
ideally piecewise constant, comprising grey matter, white 
matter, air, ventricles. The right image is a segmentation 
of the image at left.
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Edge based Segmentation

Mainly used for segmentation of large 
well defined structures such as brain 
Parenchyma but not to distinguish 
individual tissue types.
Segmentation of White matter - Gray 
matter

• Edge: boundary between two regions with 
relatively distinct gray levels
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• Basic idea: computation of a local derivative 
operator.

• The first order derivative can be used to detect 
the presence of edge at a point in an image

• The second order derivative is used to 
determine whether an edge pixel lies on the dark 
or light side of an edge

• An imaginary line joining the extreme positive 
and negative values would cross zero near the 
midpoint of the edge.
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• In this method, the image is first smoothed to reduce noise. Then, 
the second derivative (Laplacian) of the smoothed images is 
computed. The obtained image will have positive and negative 
regions. The boundary between the positive and negative regions is 
taken as the image edges.

• This process is the same as convolving the image with the 
Laplacian of a 2-D Gaussian and finding its zero-crossings.

• Zero crossings are approximated by thresholding the LoG image by 
setting all positive values to white and all negative values to black, 
as zero crossing occurs between positive and negative values of the 
Laplacian.

Advantages of Zero Crossing

• Edges are thinner
• Noise is reduced
• Rugged Performance
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Region Based Segmentation
Let R represent the entire image. Segmentation is a process 
that partitions R into n sub regions R1,R2,…,Rn such that:

Region Growing

• Pixel aggregation: starts with a set of seed point and from these 
grows regions by appending to each seed point those neighboring 
pixels that have similar properties (e.g., gray-level, texture, color).
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Region Growing

A T-2 weighted MR brain image (left) and the segmented 
ventricles (right) using the region-growing method.

Problems:

1. Selection of initial seeds that properly 
represent regions of interest

2. Selection of suitable properties
3. Formulation of a stopping rule.
4. Only well defined regions can be robustly 

identified
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Intensity Thresholding

•Gray level histogram of an image f(x,y) composed of a light object on 
a dark background.
• To extract the object: select a threshold T that separates the gray 
levels of the background and the object.

• Threshold in general can be calculated as:
• T= T(x,y,p(x,y),f(x,y))
• T depends only on f(x,y): global threshold
• T depends on f(x,y) and p(x,y): local threshold

The method is limited:
Clinical Applications are hindered
Variability of anatomy in brain MRI
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Intensity distributions of white
matter, gray matter and CSF are
modeled as Gaussian distributions
mean = average intensity
variance = variation around the
average intensity

The threshold value is computed by: 
–Detecting the valley between the
modes in the histogram of the image.

Once the mean and variance of
each tissue type is known, voxels
can be classified based on their
intensity
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Drawbacks of previous Methods

Edge detection algorithms are 
vulnerable to artifacts and noise
Region growing algorithms depend on 
seed selection and whether  the regions 
are well defined and therfore is not 
robust
Thresholding is only good for well 
separated intensities

The “labels” we wish to assign to objects are typically few and 
known in advance
– e.g. WM, GM, CSF and air for brain MRI

Objects of interest usually form coherent continuous shapes
– If a pixel has label c, then its neighbors are also likely to have label c
– Boundaries between regions labeled c, d are continuous

Image noise means that the label to be assigned initially at any pixel 
is probabilistic, not certain

One way to accommodate these considerations is Hidden Markov 
Random Fields

Classification of Images
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Segmentation by classification 
of voxels

Every pixel is classified according to its probability of being a member 
of a particular tissue class.
The Maximum Likelihood (ML) estimator assigns to each voxel x that 
class which maximizes

The Maximum a Posteriori (MAP) estimator

Normalizes intensities

In practice do not work well on brain 

Each class is defined as a probability density function

• Each class, say the one with label     (= GM say,) has an associated 
PDF, with parameters     ,Often it is a Gaussian



15

Tissue Probability Density Function

Note the huge overlap
between the Gaussian pdf
For GM and that for WM
This means that there are
many misclassifications of
GM pixels as WM and vice
versa.

Even small amounts of noise
can change the ML
classification.

HMRF Model
Hidden Markov random field model (HMRF) is a stochastic process 
generated by a Markov random field whose state sequence is 
observed through a field of observations.

Markov random field theory (MRF) encodes the spatial information of 
an image through contextual constraints of neighboring pixels. 
Neighboring pixels have same class labels or similar intensities.

A statistical model is incomplete without its parameters being 
determined

This is solved by using the Expectation-maximization (EM) algorithm.
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MRF Model

Pair wise Independence
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MRF equivalent to Gibbs distribution

According to the local characteristics of MRFs, the joint probability of 
any pair of (Xi, Yi), given Xi's neighborhood configuration is: 

Thus, we can compute the marginal probability distribution of Yi
dependent on the parameter set     (random variable) and  , 

=        = 

where                          

We call this the hidden Markov random field (HMRF) model. Note, the
concept of an HMRF is different from that of an MRF in the sense that
the former is defined with respect to a pair of random variable families
(X,Y) while the latter is only defined with respect to X. More precisely,
an HMRF model can be described by the following: 

, 
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Model Simulation
Image simulation by the FGM model and the GHMRF model. 
The first row shows the 3-class case. (a) FGM model; 
(b)-(d) GHMRF mode with standard deviation 0.23, 0.4, 0.5, respectively. 
The second row shows the 5-class case. (e) FGM model; 
(f)-(h) GHMRF model with standard deviation 0.3, 0.47, 0.55, respectively. 

MRF-MAP estimation



19

Pixel wise independence & ICM

Expectation-maximization
statistical model is complete only if both its functional form and its 
parameters are determined. The procedure for estimating the unknown 
parameters is known as model fitting. 

We have assumed that we know the model parameters               
ahead of time. Unfortunately, this is rarely the case. The next idea is to 
estimate the parameters and do the segmentation cooperatively using 
the EM algorithm
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Expectation Step

Maximization step
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Summarize EM

Experiment

• Figure 2(a) shows a simulated 
3-class image sampled from an 
MRF model using the Gibbs 
sampler. 

• Figure 2(b)-(e) show the same 
images with added Gaussian 
noise with standard deviation of 
28, 47, 66, and 95. 

• Because image contrast is what 
we are most interested in for 
examining qualities of an image, 
a measurement of the noise is 
more meaningful with image 
contrast being taken into 
account. 
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• The standard HMRF-EM algorithm are then applied to the four test images 
until there is no significant change in the value of the Q-function. To 
measure the segmentation accuracy, we also define the misclassification 
ratio (MCR), which is 

• the HMRF-EM algorithm gives more accurate estimates for parameters; 
• the HMRF-EM algorithm provides automatic segmentation with much lower 

MCR. 

Automated Segmentation

•The prior probability for 
tissue type k is provided by 
the statistical brain atlas

•No unknown spatial model 
parameters to be
estimated
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Bias field Correction
Since it is a complete approach to segmenting piecewise-constant images, the 
HMRF-EM framework can be applied to brain MR images. 

However, MR images are often corrupted by a low-frequency spatially varying 
artifact known as the bias field. 

This is mainly caused by the variation of the interaction between the human 
body and the magnetic field. The bias field can also be due to the differential 
attenuation of signals and nonlinearities of the sensitivities of the receiver 
coils, etc. 

Although such an artifact has little impact on visual diagnosis, the performance 
of most automatic image analysis techniques, especially intensity-based 
segmentation, can degrade dramatically. Therefore, a robust, automatic, and 
inexpensive way of correcting for this artifact is required. 

Bias field affects Histogram
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• Include an explicit model for the bias field in the intensity model
• Bias field is usually assumed to be multiplicative
• After logarithmic transformation => bias field becomes additive

iii NII i
originalmeasured +⋅= γ

Gain field

β i

original
i

measured
i yy +=

Applying EM to bias field correction
developed by W. M. Wells

• Given the class labels x, it is further assumed that the ideal intensity 
value at pixel i follows a Gaussian distribution with parameter

• With the bias field bi taken into account, the above distribution can be 
written in terms of the observed intensity yi as

• Thus, the intensity distribution is modelled as a Gaussian mixture, 
given the bias field. It follows that 

: 
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Applying EM to bias field correction
developed by W. M. Wells

The MAP principle is then employed to obtain the optimal estimate of the 
bias field, given the observed intensity values:

A zero-gradient condition is then used to assess this maximum,
Wij = 

bi   =

Wij is the posterior probability that pixel i belongs to class j given the bias 
field estimate. 

R is the residual and F is a low pass filter

• The E step assumes that 
the bias field is known and 
calculates the posterior 
tissue class probability Wij. 

• In the M step, the bias field 
B is estimated given the 
estimated Wij in the E 
step. 

• Once the bias field is 
obtained, the original 
intensity I* is restored by 
dividing I by the inverse 
log of B. Initially, the bias 
field is assumed to be zero 
everywhere.
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Partial Volume Segmentation
Assumed so far that each voxel belongs to one single tissue type
In reality, many voxels in brain MR images are a mixture of several 
tissue types at the same time
-Complex shape of the tissue interfaces in the brain
-Limited spatial resolution of MRI

Consistently misplacing the tissue borders in a 1 mm isotropic brain 
MRI with a single pixel in each slice results in large volume errors
[Niessen et al., 1999]:
~ 30% for white matter
~ 40% for gray matter
~ 60% for CSF
Partial volume voxels make lesion segmentation more difficult
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• Expectation step: find the function
Involves a partial volume image classification: Not only probability for 

pure tissuesBut also probability for e.g. 22% of tissue1 and 78% of 
tissue 2

• Mixing combination in a voxel is independent of the mixing 
combinations in other voxels All non-pure mixing combinations are 
equally probable

• Markov random field model
• Clustered regions of the same tissue type before downsampling
• Homogeneous regions of pure tissues bordered by partial volume 

voxels after downsampling
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Drawbacks of HMRF-EM
MRF model tends to minimize the boundary 
length between tissues. 

This discourages classifications from 
accurately following the complex shape of the 
tissue interfaces 

MRF over-smooths the classifications in cases 
where the intensity information doesn't 
prevent it


