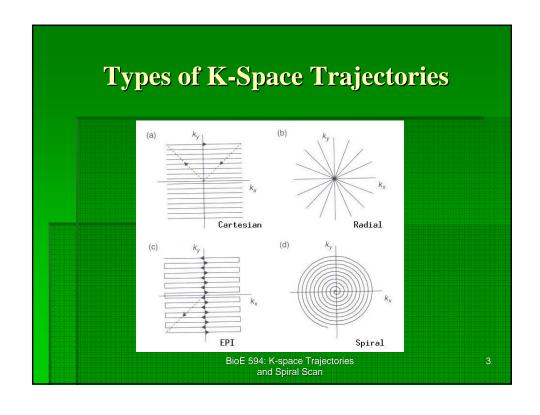
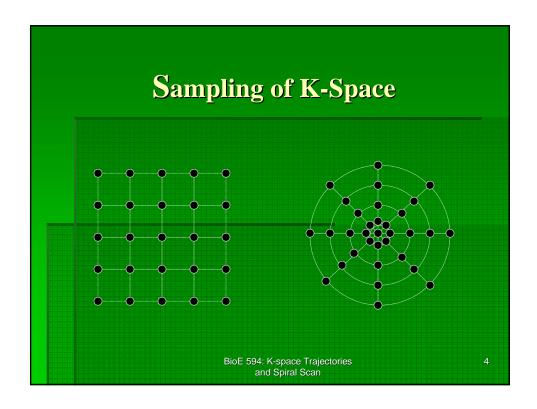
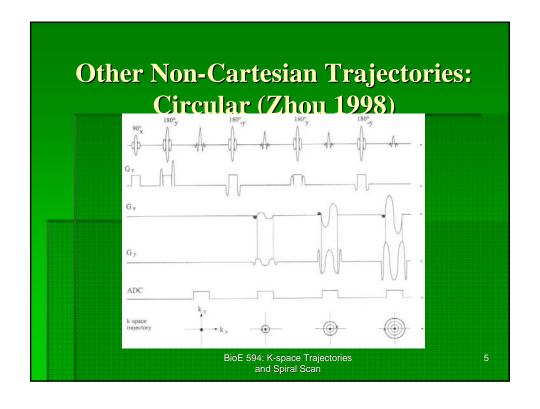
K-Space Trajectories and Spiral Scan

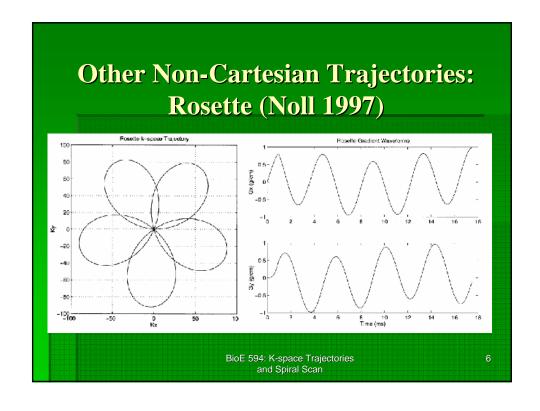
Presented by:

Novena Rangwala nrangw2@uic.edu


BioE 594: K-space Trajectories and Spiral Scan


1


Outline


- K-space Trajectories
- Gridding Reconstruction
- Features of Spiral Sampling
- Pulse Sequences
- Mathematical Basis of Spiral Scanning
- Variations of Spiral-Out Sampling
- Hardware Considerations
- Comparison with Rectilinear Sampling
- An Application

BioE 594: K-space Trajectories and Spiral Scan

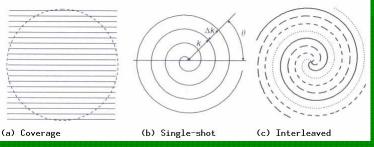
Reconstruction of Non-Cartesian Sampled Data (Gridding)

□ Sampled data → Convolution in k-space → Rectilinearly resample data → "Normal" reconstruction

$$S^{(c)}(m\Delta k) = \sum_{i} S(k_i) g(m\Delta k - k_i) \Delta k_i^{(s)}$$

 Choice of convolution function depends upon processing time and interpolation accuracy

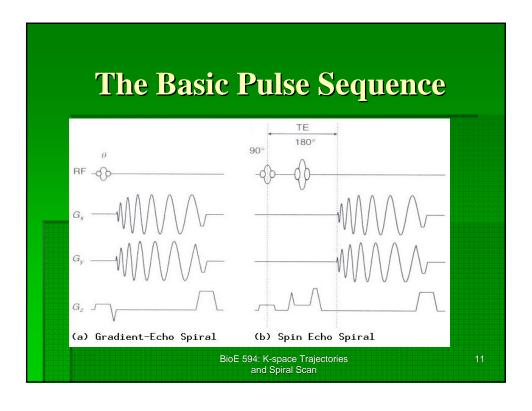
BioE 594: K-space Trajectories and Spiral Scan


Why use Non-Cartesian Trajectories?

- Effectively faster scanning possible
- Efficient coverage of k-space
- Off-resonance spins result in blurring in spiral scans, rather than geometric distortion
- Usually robust to motion

BioE 594: K-space Trajectories and Spiral Scan

- Developed by Ahn CB, et al., 1986
- □ Samples k-space data in a *spiral* manner
- Effectively collects a circular window


BioE 594: K-space Trajectories and Spiral Scan

9

Some Features

- Allows a flexible tradeoff between the number of shots, and amount of data per shot
- Can be combined with MRI techniques
- 2-D readout function in X and Y
- Central over-sampling reduces sensitivity to motion
- □ Adjustable echo time

BioE 594: K-space Trajectories and Spiral Scan

Some Math...

- Let $k_x = k \cos\theta$ and $k_y = k \sin\theta$
- The spiral trajectory: $k(t) = \lambda \theta(t)$
- For alias-free sampling satisfying the Nyquist criterion radially,

$$\lambda = \frac{N_{shot}}{2\pi L}$$

■ To satisfy the azimuthal Nyquist requirement, $\gamma_{GL} = 2\Delta v$

 $\frac{\gamma}{2\pi}G_0L = 2\Delta\upsilon$

BioE 594: K-space Trajectories and Spiral Scan

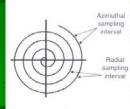
Some more Math...

■ The maximum k-space radius is defined by

$$k_{\text{max}} = \frac{N}{2L}$$

• From the equation for the spiral trajectory, we can get,

$$\theta_{\text{max}} = \frac{k_{\text{max}}}{\lambda} = \frac{\pi N}{N_{\text{obst}}}$$

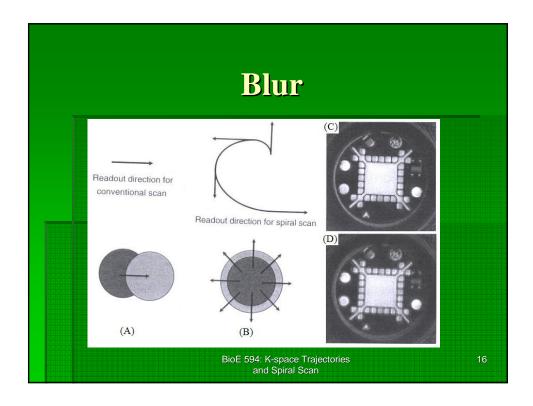

□ ... So what happens if the math isn't right??

BioE 594: K-space Trajectories and Spiral Scan

Aliasing

□ (B): TR=500ms, TE=2.5ms, FA=90°, FOV=24cm, 10mm slice, N=200, N_{shot}=32, $\Delta v = \pm 62.5 \text{kHz},$ T_{acq}=8.129ms, SR=120 T/m/s, G₀=12.2mT/m, $\lambda = 0.21/\text{cm}$ $^{□}$ (C): λ =0.38/cm, $T_{acq} = 4.8 \text{ms}$

 \Box (D): $G_0=22 \text{ mT/m}$, $T_{acq}=4.8$ ms



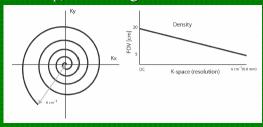
BioE 594: K-space Trajectories and Spiral Scan

Off-Resonance Blur

- Blurring, due to off-resonance effects, increases with T_{acq}
- Approaches to reduce blurring
 - (a) Decrease FOV: Introduces aliasing
 - (b) Increase N_{shot} : Increases scan time
 - (c) Increase Δx : Decreases spatial resolution

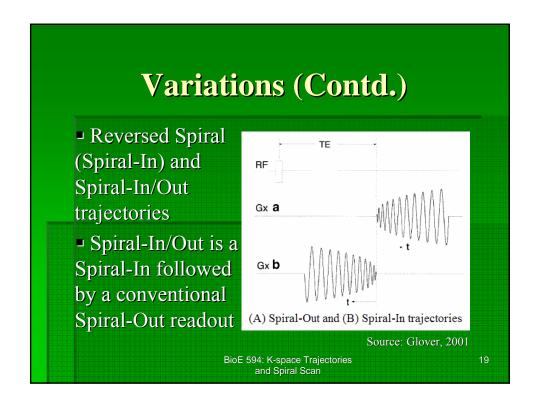
BioE 594: K-space Trajectories and Spiral Scan

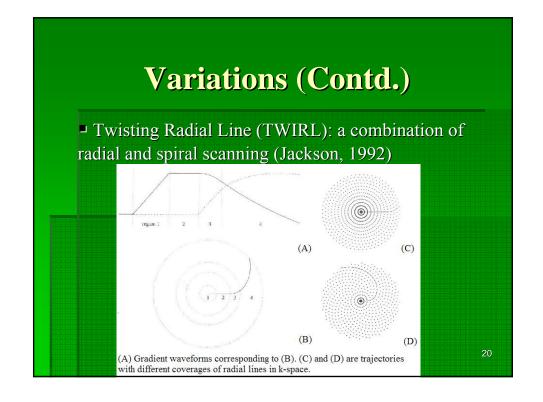
Dealing with Image Blur

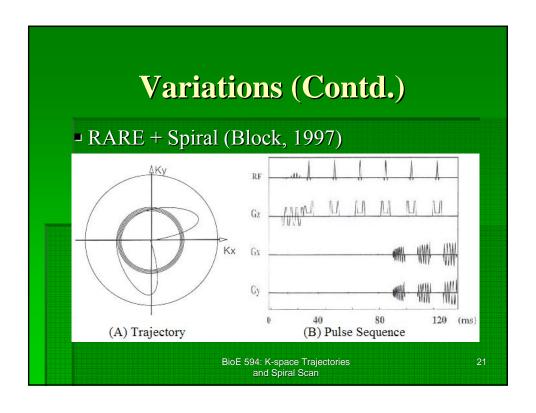

- Deconvolution
- Frequency-segmented correction
- Time-segmented correction
- Simulated phase-evolution rewinding (SPHERE)
- Block regional off-resonance correction (BRORC)

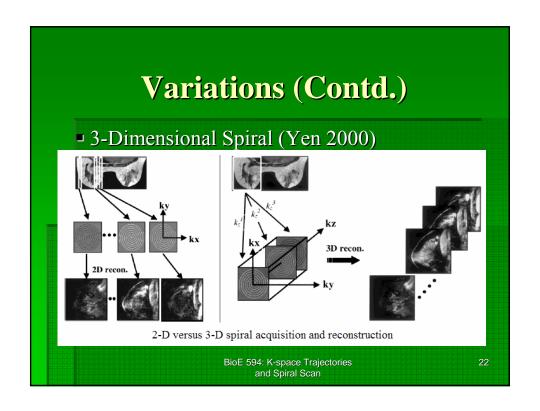
BioE 594: K-space Trajectories and Spiral Scan

17


Variations of Spiral-Out Sampling


- Variable-density spirals with
- (a) Undersampling of edges: Samples the center with Nyquist freq., time-efficient
- (b) Oversampling of k-space: Samples the edges at Nyquist freq., no aliasing




Source: Santos, 2006

BioE 594: K-space Trajectories and Spiral Scan

Hardware Considerations

- Eddy currents are compensated for by adjusting the location of the A/D window relative to the spiral readout gradient
- Some gradient amplifier designs give poorer fidelity for spiral waveforms → blurring, shading or rotating of images

BioE 594: K-space Trajectories and Spiral Scan

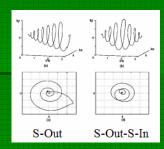
23

Comparison with Rectilinear Sampling

- Over-samples the center of k-space, so it is fairly motion insensitive
- Less number of shots required, therefore time-efficient
- Can be used with other techniques in MR

BioE 594: K-space Trajectories and Spiral Scan

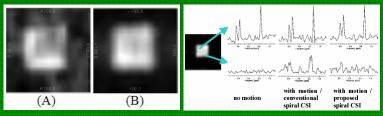
Comparison with Rectilinear Sampling (Contd.)


- Image Blurring due to off-resonance effects
- Aliasing from objects extending outside the FOV
- Longer reconstruction time
- Generally restricted to applications with small FOVs, where the effects of blurring are comparatively less

BioE 594: K-space Trajectories and Spiral Scan

2

Spiral In-Out Scanning in CSI (Kim, 2003)


- Used spiral-out-in trajectory over conventional spiral-out, to reduce phase accumulated due to gradient moments
- Motion similar to respiratory movement was induced
- TR=1500ms, TE=144ms, 30cm FOV with 10cm PRESS box, 32x32 matrix, 0.5s readout with 2min scan time, motion was 1cm/sec in Ydirection.

BioE 594: K-space Trajectories and Spiral Scan

Spiral In-Out Scanning in CSI (Kim, 2003)

 Spiral-Out Spiral-In trajectory is more efficient than cartesian phase encoding as well as conventional spiral scan to reduce motion effects in CSI.

BioE 594: K-space Trajectories and Spiral Scan

27

References

- Ahn CB, Rew CY, Kim JH, et. al., Proc. Soc. Mag. Reson. Med., 2: 935-936 (1985)
 Ahn CB, Kim JH, Cho ZH, "High-Speed Spiral-Scan Echo Planar NMR Imaging 1", IEEE Trans. Med. Imag., MI-5, 2-7 (1986)
- Bernstein MA, King KF, Zhou XJ, "Handbook of MRI Pulse Sequences", *Elsevier Academic Press*, USA, 2004.
- Block W, Pauly J, Nishimura D, "RARE Spiral T2-Weighted Imaging", Magn. Reson. Med., 37:582-590 (1997)
- Glover GH, Lee AT, "Motion Artifacts in fMRI: Comparison of 2DFT with PR and Spiral Scan Methods", Magn. Reson. Med., 33:624-635 (1995)
- Glover GH, Law CS, "Spiral-In/Out BOLD fMRI for Increased SNR and Reduced Susceptibility Effects", Magn. Reson. Med., 46:515-522, 2001
- Jackson JI, Nishimura DG, Macovski A, "Twisting Radial Lines with Application to Robust Magnetic Resonance Imaging of Irregular Flow", Magn. Reson. Med., 25:128-139 (1992)
 Kim DH, Adalsteinsson E, Spielman DM, "Spiral-Out Spiral-In CSI", Proc. Intl. Soc. Magn. Reson. Med., 11 (2003)

- Lauterbur PC, "Image Formation by Induced Local Interactions: Examples involving Nuclear Magnetic Resonance", *Nature*, 242:190-191 (1973)
 Noll DC, "Multi-shot Rosette Trajectories for Spectrally-Selective MR Imaging", *IEEE Trans. Med. Imag.*, 16:372-377 (1997)
- Santos JM, Cunningham CH, et al., "Single Breath-Hold Whole-Heart MRA using Variable-Density Spirals at 3T", Magn. Reson. Med., 55:371-379 (2006)
- Zhou X, Liang ZP, Gewalt SL, et. al., A Fast Spin-Echo technique with Circular Sampling, Magn. Reson. Med., 39:23-27 (1998)

BioE 594: K-space Trajectories and Spiral Scan